Perverse Sheaves Learning Seminar: Derived Categories and its Applications to Sheaves

Yuguang (Roger) Bai

September 29, 2018

1 Derived Categories

Unless otherwise stated, let \mathscr{A} be an abelian category.

Definition 1.1. Let $Ch(\mathscr{A})$ be the category of chain complexes in \mathscr{A} . Objects in this category are chain complexes A^{\bullet} , which is a sequence of objects and morphisms in \mathscr{A} of the form

$$\cdots \longrightarrow A^{i-1} \xrightarrow{d^{i-1}} A^i \xrightarrow{d^i} A^{i+1} \longrightarrow \cdots$$

satisfying $d^i \circ d^{i-1} = 0$ for every $i \in \mathbb{Z}$.

A morphism $f: A^{\bullet} \to B^{\bullet}$ between two complexes is a collection of morphisms $f = (f^i: A^i \to B^i)_{i \in \mathbb{Z}}$ in \mathscr{A} such that $f^{i+1} \circ d^i_A = d^i_B \circ f^i$ for every $i \in \mathbb{Z}$.

Definition 1.2. A chain complex A^{\bullet} is said to be **bounded above** if there is an integer N such that $A^{i} = 0$ for all i > N. Similarly, A^{\bullet} is said to be **bounded below** if there is an integer N such that $A^{i} = 0$ for all i < N. A^{\bullet} is said to be **bounded** if it is bounded above and bounded below.

Let $Ch^{-}(\mathscr{A})$ (resp. $Ch^{+}(\mathscr{A})$, $Ch^{b}(\mathscr{A})$) denote the full subcategory of $Ch(\mathscr{A})$ consisting of boundedabove (resp. bounded-below, bounded) complexes.

Let $Ch^{\circ}(\mathscr{A})$ denote any of the four categories above. For a complex A^{\bullet} , let $[1] : Ch(\mathscr{A}) \to Ch(\mathscr{A})$ denote the shift functor where $A[1]^i = A^{i-1}$.

Definition 1.3. A quasi-isomorphism in $Ch(\mathscr{A})$ is a chain map $f : A^{\bullet} \to B^{\bullet}$ such that the induced maps $H^{n}(f) : H^{n}(A) \to H^{n}(B)$ are isomorphisms for all n.

The derived category for \mathscr{A} can be thought of as a category obtained from $Ch(\mathscr{A})$ by having quasiisomorphisms be actual isomorphisms. To do this, we localize (= invert) quasi-isomorphisms.

Definition 1.4. Let \mathscr{A} be an additive category and let \mathscr{S} be a class of morphisms in \mathscr{A} closed under composition. Let $\mathscr{A}_{\mathscr{S}}$ be an additive category and let $L: \mathscr{A} \to \mathscr{A}_{\mathscr{S}}$ be an additive functor. We say $(\mathscr{A}_{\mathscr{S}}, L)$ is obtained by **localizing** \mathscr{A} at \mathscr{S} if \mathscr{A}' is an additive category and $F: \mathscr{A} \to \mathscr{A}'$ is an additive functor that sends all morphisms of \mathscr{S} to isomorphisms, then there exists a unique functor $\overline{F}: \mathscr{A}_{\mathscr{S}} \to \mathscr{A}'$ and a unique isomorphism $\epsilon: \overline{F} \circ L \xrightarrow{\sim} F$.

This is similar to the construction of localizing a ring. However, like in the case of localizing a ring, localizations may not always exist or be nice. Proposition I.6.3 of [?] state that a localization $\mathscr{A}_{\mathscr{S}}$ exists for \mathscr{A} if \mathscr{S} satisfies the following conditions:

- L0 For every $X \in \mathscr{A}$, we have $id_X \in \mathscr{S}$.
- L1 Given morphisms $f: X \to Y$ and $s: Z \to Y$ with $s \in \mathscr{S}$, there is a commutative diagram

with $t \in \mathscr{S}$.

Given morphisms $g: W \to Z$ and $t: W \to X$ with $t \in \mathscr{S}$, there is a commutative diagram

with $s \in \mathscr{S}$.

L3 Given morp

Given morphisms $f, g: X \to Y$, the following are equivalent:

- There is a morphism $t: Y \to Y'$ with $t \in \mathscr{S}$ such that $t \circ f = t \circ g$.
- There is a morphism $s: X' \to X$ with $s \in \mathscr{S}$ such that $f \circ s = g \circ s$.

The objects of $\mathscr{A}_{\mathscr{S}}$ are the same as \mathscr{A} , but the morphisms are "roofs".

Definition 1.5. Let \mathscr{S} be a class of morphisms closed under composition. For $X, Y \in \mathscr{A}$, a **roof diagram** from X to Y is a diagram of morphisms

with $s \in \mathscr{S}$. Two roof diagrams $X \stackrel{s}{\leftarrow} W \stackrel{f}{\rightarrow} Y$ and $X \stackrel{s'}{\leftarrow} W' \stackrel{f'}{\rightarrow} Y$ are equivalent if there is a commutative diagram in \mathscr{A}

with $u \in \mathscr{S}$. Note that this means the compositions $U \to W \to X$ and $U \to W' \to X$ are homotopy equivalent, so since the first is a quasi-isomorphism, so is the second.

If \mathscr{S} satisfies L0-L3, one can identify $Hom_{\mathscr{A}_{\mathscr{S}}}(X,Y)$ with equivalence classes of roof diagrams, where composition of roof diagrams $X \stackrel{s}{\leftarrow} W \to Y$ and $Y \stackrel{s'}{\leftarrow} W' \to Z$ is a commutative diagram $X \leftarrow W' \to Z$ of the form

with $s'' \in \mathscr{S}$. The existence of such a diagram follows from L1.

Remark 1.6. Basement diagrams can also be used instead of roof diagrams to describe $Hom_{\mathscr{A}_{\mathscr{S}}}(X,Y)$. These are diagrams of the form

where $s \in \mathscr{S}$.

L2

Unfortunately, quasi-isomorphisms in $Ch(\mathscr{A})$ do not satisfy these conditions. To remedy this, instead of working with $Ch(\mathscr{A})$, we work with the homotopy category $K(\mathscr{A})$.

Definition 1.7. The **homotopy category** of \mathscr{A} , denoted by $K(\mathscr{A})$, is the category whose objects are those of $Ch(\mathscr{A})$, but whose morphisms are homotopy classes of chain maps. That is, $Hom_{K(\mathscr{A})}(A^{\bullet}, B^{\bullet}) := Hom_{Ch(\mathscr{A})}(A^{\bullet}, B^{\bullet}) / \sim$, where for two morphisms $f, g: A^{\bullet} \to B^{\bullet}$ in $Ch(\mathscr{A})$, we say $f \sim g$ if there exists a collection of morphisms $h^i: A^i \to B^{i-1}, i \in \mathbb{Z}$, such that

$$f^i - g^i = h^{i+1} \circ d^i_A + d^{i-1}_B \circ h^i.$$

As in the case of Ch(A), let $K^{-}(\mathscr{A})$ (resp. $K^{+}(\mathscr{A})$, $K^{b}(\mathscr{A})$) denote the full subcategory of $K(\mathscr{A})$ of bounded-above (resp. bounded-below, bounded) complexes.

Let $K^{\circ}(\mathscr{A})$ denote any of the four homotopy categories.

Remark 1.8. One can show that $K^{\circ}(\mathscr{A})$ is equivalent to $Ch^{\circ}(\mathscr{A})$ localized at chain homotopies.

Proposition 1.9. In $K^{\circ}(\mathscr{A})$ the class of quasi-isomorphisms satisfies L1-L3.

Proof. See Section I.6 of /?/.

Definition 1.10. The **derived category** (resp. bounded-above derived category, bounded-below derived category, bounded derived category) of \mathscr{A} , denoted $D(\mathscr{A})$ (resp. $D^{-}(\mathscr{A}), D^{+}(\mathscr{A}), D^{b}(\mathscr{A})$) is the category obtained from $K(\mathscr{A})$ (resp. $K^{-}(\mathscr{A}), K^{+}(\mathscr{A}), K^{b}(\mathscr{A})$) by localizing at the quasi-isomorphisms.

Let $D^{\circ}(\mathscr{A})$ denote any of the four derived categories.

Remark 1.11. For an object $A \in \mathscr{A}$, we can view A as a chain complex A^{\bullet} where $A^{0} = A$ and $A^{i} = 0$ for $i \neq 0$. This allows us to embed \mathscr{A} into $D^{b}(\mathscr{A})$ as a full subcategory.

We will now proceed to the important notion of distinguished triangles.

Definition 1.12. Let $f: (A^{\bullet}, d^{\bullet}_A) \to (B^{\bullet}, d^{\bullet}_B)$ be a chain map. The **chain-map cone (mapping cone)** of f, denoted by cone(f), is the chain complex given by

$$cone(f)^i = A^{i+1} \oplus B^i$$

with differential $d^i : cone(f)^i \to cone(f)^{i+1}$ given by

$$d^{i} = \begin{bmatrix} -d_{A}^{i+1} & 0\\ f^{i+1} & d_{B}^{i} \end{bmatrix}.$$

The inclusion maps $B^i \to cone(f)^i$ and projection maps $cone(f)^i \to A^{i+1}$ give chain maps

 $i_2: B \to cone(f)$ and $p_1: cone(f) \to A[1]$

Exercise 1.13. Show that the composition $B^{\bullet} \to cone(f) \to A^{\bullet}[1]$ is zero and the composition $A^{\bullet} \to B^{\bullet} \to cone(f)$ is homotopic to the zero map.

Definition 1.14. A diagram

$$A_1 \to A_2 \to A_3 \to A_1[1]$$

in $K^{\circ}(\mathscr{A})$ (resp. $D^{\circ}(\mathscr{A})$) is called a **distinguished triangle** if it is isomorphic in $K^{\circ}(\mathscr{A})$ (resp. $D^{\circ}(\mathscr{A})$) to a diagram of the form

$$A \xrightarrow{f} B \xrightarrow{i_2} cone(f) \xrightarrow{p_1} A[1]$$

for some chain map f.

An additive category with a shift functor (automorphism) and distinguished triangles (collection of diagrams) satisfying some natural axioms is called a triangulated category. The homotopy category $K^{\circ}(\mathscr{A})$ and the derived category $D^{\circ}(\mathscr{A})$ are natural examples.

Remark 1.15. If we have a distinguished triangle $X \to Y \to Z \to X[1]$, then it gives us a long exact sequence in cohomology

$$\cdots \longrightarrow H^k(X) \longrightarrow H^k(Y) \longrightarrow H^k(Z) \longrightarrow H^{k+1}(X) \longrightarrow \cdots$$

2 Derived Functors

Definition 2.1. Let \mathscr{T} and \mathscr{T}' be triangulated categories (e.g. $D^b(\mathscr{A})$ and $D^b(\mathscr{A}')$). A triangulated functor is an additive functor $F: \mathscr{T} \to \mathscr{T}'$ with a natural isomorphism

$$F(X[1]) \cong F(X)[1]$$

such that for any distinguished triangle $X \to Y \to Z \to X[1]$ in \mathscr{T} ,

$$F(X) \to F(Y) \to F(Z) \to F(X)[1]$$

is a distinguished triangle in \mathscr{T}' .

Lemma 2.2. If $F : \mathscr{A} \to \mathscr{B}$ is an additive functor of additive categories, the induced functor $F : K^{\circ}(\mathscr{A}) \to K^{\circ}(\mathscr{B})$ is a triangulated functor. If in addition F is an exact functor of abelian categories, the induced functor $F : D^{\circ}(\mathscr{A}) \to D^{\circ}(\mathscr{B})$ is a triangulated functor.

Proof. Easy exercise.

Recall that a complex A^{\bullet} in $Ch^{\circ}(\mathscr{A})$ or $K^{\circ}(\mathscr{A})$ is called **acyclic** $H^{i}(A^{\bullet}) = 0$ for all *i*. If we have a functor *F* that is not exact, the image of an acyclic complex may not be acyclic, or it may not send quasi-isomorphisms to quasi-isomorphisms.

In the case of an exact functor F, we obtain a triangulated functor $\overline{F}: D^{\circ}(\mathscr{A}) \to D^{\circ}(\mathscr{B})$ and a natural isomorphism $\theta: L_{\mathscr{B}} \circ F \xrightarrow{\sim} \overline{F} \circ L_{\mathscr{A}}$ where $L_{\mathscr{A}}: K^{\circ}(\mathscr{A}) \to D^{\circ}(\mathscr{A})$ is the localization functor. Then in the case where F is not exact, the next best thing is to have a natural transformation in one direction.

Definition 2.3. Let $F: K^{\circ}(\mathscr{A}) \to K^{\circ}(\mathscr{B})$ be a triangulated functor. A **right derived functor** of F is a triangulated functor $RF: D^{\circ}(\mathscr{A}) \to D^{\circ}(\mathscr{B})$ with a natural transformation

$$\epsilon: L_{\mathscr{B}} \circ F \to RF \circ L_{\mathscr{A}}$$

that is universal in the following sense: if $G: D^{\circ}(\mathscr{A}) \to D^{\circ}(\mathscr{B})$ is another triangulated functor with a natural transformation $\phi: L_{\mathscr{B}} \circ F \to G \circ L_{\mathscr{A}}$, then there exists a unique functor morphism $\tilde{\phi}: RF \to G$ such that $\phi = (\tilde{\phi}L_{\mathscr{A}}) \circ \epsilon$, where $\tilde{\phi}L_{\mathscr{A}}: RF \circ L_{\mathscr{A}} \to G \circ L_{\mathscr{A}}$.

Similarly, a **left derived functor** of F is a triangulated functor $LF : D^{\circ}(\mathscr{A}) \to D^{\circ}(\mathscr{B})$ together with a natural transformation

$$\eta: LF \circ L_{\mathscr{A}} \to L_{\mathscr{B}} \circ F$$

that is universal in the following sense: if $G: D^{\circ}(\mathscr{A}) \to D^{\circ}(\mathscr{B})$ is another triangulated functor with a natural transformation $\phi: G \circ L_{\mathscr{A}} \to L_{\mathscr{B}} \circ F$, then there exists a unique functor morphism $\tilde{\phi}: G \to LF$ such that $\phi = \eta \circ (\tilde{\phi}L_{\mathscr{A}})$ where $\tilde{\phi}L_{\mathscr{A}}: G \circ L_{\mathscr{A}} \to LF \circ L_{\mathscr{A}}$.

Definition 2.4. Let \mathscr{A} be an abelian category and $\mathscr{Q} \subset \mathscr{A}$ a full subcategory. \mathscr{Q} is said to be **large** enough on the right if for any object $A \in \mathscr{A}$, there is an injective map $A \to X$ with $X \in \mathscr{Q}$.

Similarly, \mathscr{Q} is said to be **large enough on the left** if for any object $A \in \mathscr{A}$, there is a surjective map $X \to A$ with $X \in \mathscr{Q}$.

Definition 2.5. Let $\mathscr{Q} \subset \mathscr{A}$ be a full subcategory.

- 1. Given $A \in Ch^{\circ}(\mathscr{A})$, a **right** \mathscr{Q} -resolution of A is a quasi-isomorphism $q : A \to Q$ such that $Q \in Ch^{\circ}(\mathscr{Q})$. For $A \in Ch^{+}(\mathscr{A})$, such a right resolution is said to be strict if $A \in Ch(\mathscr{A})^{\geq n}$ and $Q \in Ch(\mathscr{A})^{\geq n}$ for a fixed n.
- 2. Given $A \in Ch^{\circ}(\mathscr{A})$, a left \mathscr{Q} -resolution of A is a quasi-isomorphism $q : Q \to A$ such that $Q \in Ch^{\circ}(\mathscr{Q})$. For $A \in Ch^{-}(\mathscr{A})$, such a right resolution is said to be strict if $A \in Ch(\mathscr{A})^{\leq n}$ and $Q \in Ch(\mathscr{A})^{\leq n}$ for a fixed n.

Example 2.6. Consider the case of $A \in \mathscr{A}$ as a sequence A^{\bullet} where $A^{i} = 0$ for $i \neq 0$ and $A^{0} = A$. Then a strict right \mathscr{Q} -resolution Q^{\bullet} of A is the same as giving an exact sequence

$$0 \longrightarrow A^0 \xrightarrow{q} Q^0 \xrightarrow{d^0_Q} Q^1 \xrightarrow{d^1_Q} \cdots$$

The map $q: A^0 \to Q^0$ is called the **augmentation map**.

Proposition 2.7. Let \mathscr{A} be an abelian category and let $\mathscr{Q} \subset \mathscr{A}$ be a full subcategory.

- 1. If \mathscr{Q} is large enough on the right, then every object in $Ch^+(\mathscr{A})$ admits a strict right \mathscr{Q} -resolution.
- 2. If \mathscr{Q} is large enough on the left, then every object in $Ch^{-}(\mathscr{A})$ admits a strict left \mathscr{Q} -resolution.

Proof. 1) Exercise. Hint: Take an injection $q^0 : A^0 \to Q^0$ where $Q^0 \in \mathscr{Q}$. To construct Q^1 , let $r : A^0 \to Q^0 \oplus A^1$ be given by $r = \begin{bmatrix} q^0 \\ -d_A^0 \end{bmatrix}$. Then choose an injection coker $r \to Q^1$ with $Q^1 \in \mathscr{Q}$. The map $q^1 : A^1 \to Q^1$ is the composition

$$A^1 \hookrightarrow Q^0 \oplus A^1 \twoheadrightarrow \operatorname{coker} r \to Q^1$$

and the differential $d^0_Q:Q^0\to Q^1$ is the composition

$$Q^0 \hookrightarrow Q^0 \oplus A^1 \twoheadrightarrow \operatorname{coker} r \to Q^1.$$

[WLOG, assume $A \in Ch^+(\mathscr{A})^{\geq 0}$. We want to construct a quasi-isomorphism $q = (q^i) : A^{\bullet} \to Q^{\bullet}$ where $Q^{\bullet} \in Ch^+(\mathscr{Q})^{\geq 0}$. As \mathscr{Q} is large enough, we have an injection $q^0 : A^0 \to Q^0$. Suppose we have already constructed Q^{\bullet} and maps q^{\bullet} up to the *i*th step. Let $p : Q^{i-1} \twoheadrightarrow \operatorname{coker} d_Q^{i-2}$ be the quotient map. Let $r : A^{i-1} \to \operatorname{coker} d_Q^{i-2} \oplus A^i$ be the map given by $r = \begin{bmatrix} pq^{i-1} \\ -d_A^{i-1} \end{bmatrix}$. Let $s : \operatorname{coker} d_Q^{i-2} \oplus A^i \twoheadrightarrow \operatorname{coker} r$ be the quotient. Choose an injection $u : \operatorname{coker} r \to Q^i$ with $Q^i \in \mathscr{Q}$. Define $d_Q^{i-1} = u \circ s \circ i_1 \circ p$ and $q^i = u \circ s \circ i_2$ as in the diagram:

Then check that Q^{\bullet} is a complex and q is a chain map and quasi-isomorphism.]

Definition 2.8. Let $F : \mathscr{A} \to \mathscr{B}$ be a left exact functor of abelian categories. A full subcategory $\mathscr{Q} \subset \mathscr{A}$ is said to be a **right adapted class** for F if it satisfies the following conditions:

- 1. The class \mathcal{Q} is large enough on the right.
- 2. If $0 \to X' \to X \to X'' \to 0$ is a short exact sequence with $X', X \in \mathcal{Q}$, then $X'' \in \mathcal{Q}$.
- 3. For any short exact sequence $0 \to X' \to X \to X'' \to 0$ with $X' \in \mathcal{Q}$, the sequence $0 \to F(X') \to F(X) \to F(X'') \to 0$ is exact.

Similarly, for a right exact functor $F : \mathscr{A} \to \mathscr{B}$, a full subcategory $\mathscr{Q} \subset \mathscr{A}$ is said to be a **left adapted** class for F if it satisfies the following conditions:

- 1. The class \mathscr{Q} is large enough on the left.
- 2. If $0 \to X' \to X \to X'' \to 0$ is a short exact sequence with $X, X'' \in \mathcal{Q}$, then $X' \in \mathcal{Q}$.
- 3. For any short exact sequence $0 \to X' \to X \to X'' \to 0$ with $X'' \in \mathcal{Q}$, the sequence $0 \to F(X') \to F(X) \to F(X'') \to 0$ is exact.

Example 2.9. Let A be an algebra and A-mod be the category of A-modules. Then the full subcategory of projective modules \mathcal{P} is large enough on the left and the full subcategory of injective modules \mathcal{I} is large enough on the right.

Let M be an A-module. Then Hom(M, -) is left exact with \mathcal{I} as a right adapted class and $M \otimes -$ (or equivalently $- \otimes M$) is right exact with \mathcal{P} as a left adapted class.

Lemma 2.10. Let \mathscr{A} and \mathscr{B} be abelian categories.

- 1. Let $F : \mathscr{A} \to \mathscr{B}$ be a left exact functor, and let \mathscr{Q} be a right adapted class for F. If $Q \in Ch^+(\mathscr{Q})$ is acyclic, then F(Q) is acyclic. If $f : X \to Y$ is a quasi-isomorphism in $Ch^+(\mathscr{Q})$, then F(f) is a quasi-isomorphism.
- 2. Let $F : \mathscr{A} \to \mathscr{B}$ be a right exact functor, and let \mathscr{Q} be a left adapted class for F. If $Q \in Ch^{-}(\mathscr{Q})$ is acyclic, then F(Q) is acyclic. If $f : X \to Y$ is a quasi-isomorphism in $Ch^{-}(\mathscr{Q})$, then F(f) is a quasi-isomorphism.

Proof. Suppose F is left exact and let $Q \in Ch^+(\mathscr{Q})$ be acyclic. Let $K^i = \operatorname{im} d^{i-1} = \ker d^i$. Any left exact functor preserves kernels, then $F(K^i) \cong \ker F(d^i)$. Using induction, suppose im $F(d^{i-2}) = F(K^{i-1})$ and $K^{i-1} \in \mathscr{Q}$. We have a short exact sequence

$$\eta: 0 \to K^{i-1} \to Q^i \stackrel{d^{i-1}}{\to} K^i \to 0.$$

As \mathscr{Q} is an adapted class, we have $K^i \in \mathscr{Q}$ and $F(\eta)$ is an exact sequence, so im $F(d^{i-1}) \cong F(K^i)$. Thus F(Q) is acyclic.

Suppose $f: X \to Y$ is a quasi-isomorphism. Extend f to a distinguished triangle $X \xrightarrow{f} Y \to K \to$ in $K^+(\mathscr{Q})$. Note that f is a quasi-isomorphism if and only if K is acyclic, so apply the above result (apply cohomology to the triangle to get a long exact sequence of cohomology).

Theorem 2.11. Let \mathscr{A} and \mathscr{B} be abelian categories.

- 1. If $F : \mathscr{A} \to \mathscr{B}$ is a left exact functor that admits a right adapted class, then it admits a right derived functor $RF : D^+(\mathscr{A}) \to D^+(\mathscr{B})$.
- 2. If $F : \mathscr{A} \to \mathscr{B}$ is a right exact functor that admits a left adapted class, then it admits a left derived functor $LF : D^{-}(\mathscr{A}) \to D^{-}(\mathscr{B})$.

We will describe what the functor RF does on objects and morphisms. For $X \in Ch^+(\mathscr{A})$, choose a right \mathscr{Q} -resolution $q_X : X \to Q_X$. Define

$$RF(X) = F(Q_X).$$

Let $f: X \to Y$ be a morphism. As q_X is a quasi-isomorphism, we can form $\tilde{f} = q_Y \circ f \circ q_X^{-1} : Q_X \to Q_Y$. As a basement, \tilde{f} can be represented by the diagram

where s is a quasi-isomorphism. Then $q_W \circ s : Q_Y \to Q_W$ is a quasi-isomorphism so $F(q_W \circ s)$ is a quasi-isomorphism. Define $RF(f) : RF(X) \to RF(Y)$ to be the basement diagram

Define the natural transformation $\epsilon: L_{\mathscr{B}} \circ F \to RF \circ L_{\mathscr{A}}$ where for $X \in K^+(\mathscr{A})$, let ϵ_X be the map

$$L_{\mathscr{B}}(F(X)) \xrightarrow{L_{\mathscr{B}}(F(q_X))} L_{\mathscr{B}}(F(Q_X)) = RF(L_{\mathscr{A}}(X)).$$

Exercise 2.12. Check the above is well-defined. In particular, check that the definition does not depend on which \mathcal{Q} -resolution is taken and does not depend on which basement diagram is taken.

Proposition 2.13. Let $F: \mathscr{A} \to \mathscr{B}$ and $G: \mathscr{B} \to \mathscr{C}$ be left exact functors. Suppose that F and G have right adapted classes $\mathscr{Q} \subset \mathscr{A}$ and $\mathscr{S} \subset \mathscr{B}$, respectively, such that $F(\mathscr{Q}) \subset \mathscr{S}$. Then there is a canonical isomorphism $R(G \circ F) \xrightarrow{\sim} RG \circ RF$. Similarly for right exact functors.

Proof. Exercise.

3 Sheaves

As the category of sheaves of \mathbb{C} -vector spaces on X, Sh(X), is abelian, we can form its derived category $D^{\circ}(X) \coloneqq D^{\circ}Sh(X).$

Proposition 3.1. Sh(X) has enough injectives.

Proof. For M a \mathbb{C} -vector space, as shown in Example 2.2.4 of Stefan's talk, we have $Hom_{\mathbb{C}}(\mathcal{G}_x, M) \cong$ $Hom_{Sh(X)}(\mathcal{G}, \underline{M}^x)$ natural in \mathcal{G} , where \underline{M}^x is the skyscraper sheaf at x. As all vector spaces are injective objects, then $Hom_{\mathbb{C}}(-,M)$ is an exact functor so $Hom_{Sh(X)}(-,\underline{M}^x)$ is also exact. Thus \underline{M}^x is an injective sheaf. Using the universal property of the product, $\prod_{x \in X} (\underline{M}^x)$ is also an injective sheaf. Let \mathcal{F} be a sheaf. There is a sheaf map $\varphi: \mathcal{F} \to (\underline{\mathcal{F}}_x)^x$ with $\varphi_x: \mathcal{F}_x \to \mathcal{F}_x$ the identity. By the universal property of the product, we obtain an injective sheaf map $\theta: \mathcal{F} \to \prod_{x \in X} (\underline{\mathcal{F}}_x)^x$. \Box

By the proposition, all left exact functors have derived functors. However, Sh(X) may not have enough projectives.

As the pullback functor is exact, for $f: X \to Y$, let $f^*: D^{\circ}(Y) \to D^{\circ}(X)$ denoted the induced functor. Since it is exact, we have $(g \circ f)^* \mathcal{F} \cong f^* g^* \mathcal{F}$ for $\mathcal{F} \in D^{\circ}(X)$, by Proposition 2.1.5 of Stefan's talk, and Proposition 2.13.

As the push-forward $\circ f_*$ is left exact, it has a derived functor denoted by $f_*: D^+(X) \to D^+(Y)$.

Proposition 3.2. The push-forward functor $\circ f_*$ sends injectives to injectives.

Proof. Exercise. Use the fact that ${}^{\circ}f_{*}$ is a right adjoint to f^{*} (Proposition 2.2.2 of Stefan's talk) and f^{*} is exact.

Corollary 3.3. Let $f: X \to Y$ and $g: Y \to Z$ be continuous. Then for $\mathcal{F} \in D^+(X)$, we have $g_*f_*\mathcal{F} \cong$ $(g \circ f)_* \mathcal{F}.$

Definition 3.4. Let $A \in K^{-}(\mathscr{A})$ and $B \in K^{+}(\mathscr{A})$. Their Hom chain-complex, denoted chHom(A,B)is the chain complex in $(\text{Vect}_{\mathbb{C}})$ whose terms are

$$chHom(A,B)^n = \bigoplus_{j-i=n} Hom(A^i,B^j)$$

and differential given by

$$d(f) = d_B \circ f + (-1)^{j-i+1} f \circ d_A$$

for $f \in Hom(A^i, B^j)$.

As Sh(X) has enough injectives, we can form the **derived Hom functor** (in the second variable) $RHom: D^{-}(X)^{op} \times D^{+}(X) \to D^{+}(\operatorname{Vect}_{\mathbb{C}}).$

Proposition 3.5. For $A \in D^{-}(X)$ and $B \in D^{+}(X)$, there is a natural isomorphism

$$Hom_{D(X)}(A, B) \cong H^0(RHom(A, B)).$$

Theorem 3.6. Let $f: X \to Y$ be a continuous map. For $\mathcal{F} \in D^+(Y)$ and $\mathcal{G} \in D^+(X)$, there are natural isomorphisms

$$RHom_{D^+(X)}(f^*\mathcal{F},\mathcal{G}) \cong RHom_{D^+(Y)}(\mathcal{F},f_*\mathcal{G})$$
$$Hom_{D^+(X)}(f^*\mathcal{F},\mathcal{G}) \cong Hom_{D^+(Y)}(\mathcal{F},f_*\mathcal{G})$$

Proof. Replace \mathcal{G} by an injective resolution. The first claim reduces to the claim that there is a natural isomorphism $chHom(f^*\mathcal{F},\mathcal{G}) \cong chHom(\mathcal{F},\circ f_*\mathcal{G})$, which follows from the fact that f^* is adjoint to $\circ f_*$ in the abelian case. The second claims follows from fact that the 0th cohomology of *RHom* is *Hom*.

Remark 3.7. Let $X, Y \in Sh(X)$. For $n \in \mathbb{Z}$, the *n*th **Ext group** of X and Y, denoted by $Ext^n_{Sh(X)}(X,Y)$ or $Ext^n(X,Y)$, is given by

$$Ext^{n}(X,Y) \coloneqq Hom_{D(X)}(X,Y[n]) = H^{n}(RHom(X,Y)).$$