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1 Derived Categories

Unless otherwise stated, let A be an abelian category.

De�nition 1.1. Let Ch(A ) be the category of chain complexes in A . Objects in this category are chain
complexes A•, which is a sequence of objects and morphisms in A of the form

· · · −→ Ai−1 di−1

−→ Ai di

−→ Ai+1 −→ · · ·

satisfying di ◦ di−1 = 0 for every i ∈ Z.
A morphism f : A• → B• between two complexes is a collection of morphisms f = (f i : Ai → Bi)i∈Z in

A such that f i+1 ◦ diA = diB ◦ f i for every i ∈ Z.

De�nition 1.2. A chain complex A• is said to be bounded above if there is an integer N such that Ai = 0
for all i > N . Similarly, A• is said to be bounded below if there is an integer N such that Ai = 0 for all
i < N . A• is said to be bounded if it is bounded above and bounded below.

Let Ch−(A ) (resp. Ch+(A ), Chb(A )) denote the full subcategory of Ch(A ) consisting of bounded-
above (resp. bounded-below, bounded) complexes.

Let Ch◦(A ) denote any of the four categories above. For a complex A•, let [1] : Ch(A ) → Ch(A )
denote the shift functor where A[1]i = Ai−1.

De�nition 1.3. A quasi-isomorphism in Ch(A ) is a chain map f : A• → B• such that the induced maps
Hn(f) : Hn(A)→ Hn(B) are isomorphisms for all n.

The derived category for A can be thought of as a category obtained from Ch(A ) by having quasi-
isomorphisms be actual isomorphisms. To do this, we localize (= invert) quasi-isomorphisms.

De�nition 1.4. Let A be an additive category and let S be a class of morphisms in A closed under
composition. Let AS be an additive category and let L : A → AS be an additive functor. We say (AS , L)
is obtained by localizing A at S if A ′ is an additive category and F : A → A ′ is an additive functor that
sends all morphisms of S to isomorphisms, then there exists a unique functor F : AS → A ′ and a unique
isomorphism ε : F ◦ L ∼→ F .

This is similar to the construction of localizing a ring. However, like in the case of localizing a ring,
localizations may not always exist or be nice. Proposition I.6.3 of [?] state that a localization AS exists for
A if S satis�es the following conditions:

L0 For every X ∈ A , we have idX ∈ S .

L1 Given morphisms f : X → Y and s : Z → Y with s ∈ S , there is a commutative diagram

W
g //

t

��

Z

s

��
X

f // Y

with t ∈ S .
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L2 Given morphisms g :W → Z and t :W → X with t ∈ S , there is a commutative diagram

W
g //

t

��

Z

s

��
X

f // Y

with s ∈ S .

L3 Given morphisms f, g : X → Y , the following are equivalent:

• There is a morphism t : Y → Y ′ with t ∈ S such that t ◦ f = t ◦ g.
• There is a morphism s : X ′ → X with s ∈ S such that f ◦ s = g ◦ s.

The objects of AS are the same as A , but the morphisms are �roofs�.

De�nition 1.5. Let S be a class of morphisms closed under composition. For X,Y ∈ A , a roof diagram
from X to Y is a diagram of morphisms

W

s

~~

f

  
X Y

with s ∈ S . Two roof diagrams X
s← W

f→ Y and X
s′← W ′

f ′→ Y are equivalent if there is a commutative
diagram in A

W

s

}}

f

!!
X U

u

OO

u′

��

Y

W ′
s′

aa

f ′

>>

with u ∈ S . Note that this means the compositions U → W → X and U → W ′ → X are homotopy
equivalent, so since the �rst is a quasi-isomorphism, so is the second.

If S satis�es L0-L3, one can identify HomAS (X,Y ) with equivalence classes of roof diagrams, where

composition of roof diagrams X
s← W → Y and Y

s′← W ′ → Z is a commutative diagram X ← W ′ → Z of
the form

W ′′

s′′

}} ""
W

s

~~ !!

W ′

s′

||   
X Y Z

with s′′ ∈ S . The existence of such a diagram follows from L1.

Remark 1.6. Basement diagrams can also be used instead of roof diagrams to describe HomAS (X,Y ). These
are diagrams of the form

X

  

Y

s

~~
W

where s ∈ S .
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Unfortunately, quasi-isomorphisms in Ch(A ) do not satisfy these conditions. To remedy this, instead of
working with Ch(A ), we work with the homotopy category K(A ).

De�nition 1.7. The homotopy category of A , denoted by K(A ) , is the category whose objects are
those of Ch(A ), but whose morphisms are homotopy classes of chain maps. That is, HomK(A )(A

•, B•) :=
HomCh(A )(A

•, B•)/ ∼, where for two morphisms f, g : A• → B• in Ch(A ), we say f ∼ g if there exists a
collection of morphisms hi : Ai → Bi−1, i ∈ Z, such that

f i − gi = hi+1 ◦ diA + di−1B ◦ hi.

As in the case of Ch(A), let K−(A ) (resp. K+(A ), Kb(A )) denote the full subcategory of K(A ) of
bounded-above (resp. bounded-below, bounded) complexes.

Let K◦(A ) denote any of the four homotopy categories.

Remark 1.8. One can show that K◦(A ) is equivalent to Ch◦(A ) localized at chain homotopies.

Proposition 1.9. In K◦(A ) the class of quasi-isomorphisms satis�es L1-L3.

Proof. See Section I.6 of [?].

De�nition 1.10. The derived category (resp. bounded-above derived category, bounded-below derived
category, bounded derived category) of A , denoted D(A ) (resp. D−(A ), D+(A ), Db(A )) is the category
obtained from K(A ) (resp. K−(A ),K+(A ),Kb(A )) by localizing at the quasi-isomorphisms.

Let D◦(A ) denote any of the four derived categories.

Remark 1.11. For an object A ∈ A , we can view A as a chain complex A• where A0 = A and Ai = 0 for
i 6= 0. This allows us to embed A into Db(A ) as a full subcategory.

We will now proceed to the important notion of distinguished triangles.

De�nition 1.12. Let f : (A•, d•A)→ (B•, d•B) be a chain map. The chain-map cone (mapping cone) of
f , denoted by cone(f), is the chain complex given by

cone(f)i = Ai+1 ⊕Bi

with di�erential di : cone(f)i → cone(f)i+1 given by

di =

[
−di+1

A 0
f i+1 diB

]
.

The inclusion maps Bi → cone(f)i and projection maps cone(f)i → Ai+1 give chain maps

i2 : B → cone(f) and p1 : cone(f)→ A[1]

Exercise 1.13. Show that the composition B• → cone(f)→ A•[1] is zero and the composition A• → B• →
cone(f) is homotopic to the zero map.

De�nition 1.14. A diagram
A1 → A2 → A3 → A1[1]

in K◦(A ) (resp. D◦(A )) is called a distinguished triangle if it is isomorphic in K◦(A ) (resp. D◦(A ))
to a diagram of the form

A
f→ B

i2→ cone(f)
p1→ A[1]

for some chain map f .

An additive category with a shift functor (automorphism) and distinguished triangles (collection of di-
agrams) satisfying some natural axioms is called a triangulated category. The homotopy category K◦(A )
and the derived category D◦(A ) are natural examples.

Remark 1.15. If we have a distinguished triangle X → Y → Z → X[1], then it gives us a long exact sequence
in cohomology

· · · −→ Hk(X) −→ Hk(Y ) −→ Hk(Z) −→ Hk+1(X) −→ · · · .
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2 Derived Functors

De�nition 2.1. Let T and T ′ be triangulated categories (e.g. Db(A ) and Db(A ′)). A triangulated
functor is an additive functor F : T → T ′ with a natural isomorphism

F (X[1]) ∼= F (X)[1]

such that for any distinguished triangle X → Y → Z → X[1] in T ,

F (X)→ F (Y )→ F (Z)→ F (X)[1]

is a distinguished triangle in T ′.

Lemma 2.2. If F : A → B is an additive functor of additive categories, the induced functor F : K◦(A )→
K◦(B) is a triangulated functor. If in addition F is an exact functor of abelian categories, the induced
functor F : D◦(A )→ D◦(B) is a triangulated functor.

Proof. Easy exercise.

Recall that a complex A• in Ch◦(A ) or K◦(A ) is called acyclic Hi(A•) = 0 for all i. If we have
a functor F that is not exact, the image of an acyclic complex may not be acyclic, or it may not send
quasi-isomorphisms to quasi-isomorphisms.

In the case of an exact functor F , we obtain a triangulated functor F : D◦(A )→ D◦(B) and a natural
isomorphism θ : LB ◦ F

∼→ F ◦ LA where LA : K◦(A ) → D◦(A ) is the localization functor. Then in the
case where F is not exact, the next best thing is to have a natural transformation in one direction.

De�nition 2.3. Let F : K◦(A )→ K◦(B) be a triangulated functor. A right derived functor of F is a
triangulated functor RF : D◦(A )→ D◦(B) with a natural transformation

ε : LB ◦ F → RF ◦ LA

that is universal in the following sense: if G : D◦(A ) → D◦(B) is another triangulated functor with a
natural transformation φ : LB ◦ F → G ◦ LA , then there exists a unique functor morphism φ̃ : RF → G
such that φ = (φ̃LA ) ◦ ε, where φ̃LA : RF ◦ LA → G ◦ LA .

Similarly, a left derived functor of F is a triangulated functor LF : D◦(A )→ D◦(B) together with a
natural transformation

η : LF ◦ LA → LB ◦ F

that is universal in the following sense: if G : D◦(A ) → D◦(B) is another triangulated functor with a
natural transformation φ : G◦LA → LB ◦F , then there exists a unique functor morphism φ̃ : G→ LF such
that φ = η ◦ (φ̃LA ) where φ̃LA : G ◦ LA → LF ◦ LA .

De�nition 2.4. Let A be an abelian category and Q ⊂ A a full subcategory. Q is said to be large
enough on the right if for any object A ∈ A , there is an injective map A→ X with X ∈ Q.

Similarly, Q is said to be large enough on the left if for any object A ∈ A , there is a surjective map
X → A with X ∈ Q.

De�nition 2.5. Let Q ⊂ A be a full subcategory.

1. Given A ∈ Ch◦(A ), a right Q-resolution of A is a quasi-isomorphism q : A → Q such that
Q ∈ Ch◦(Q). For A ∈ Ch+(A ), such a right resolution is said to be strict if A ∈ Ch(A )≥n and
Q ∈ Ch(A )≥n for a �xed n.

2. Given A ∈ Ch◦(A ), a left Q-resolution of A is a quasi-isomorphism q : Q → A such that Q ∈
Ch◦(Q). For A ∈ Ch−(A ), such a right resolution is said to be strict if A ∈ Ch(A )≤n and Q ∈
Ch(A )≤n for a �xed n.
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Example 2.6. Consider the case of A ∈ A as a sequence A• where Ai = 0 for i 6= 0 and A0 = A. Then a
strict right Q-resolution Q• of A is the same as giving an exact sequence

0 −→ A0 q−→ Q0
d0
Q−→ Q1

d1
Q−→ · · ·

The map q : A0 → Q0 is called the augmentation map.

Proposition 2.7. Let A be an abelian category and let Q ⊂ A be a full subcategory.

1. If Q is large enough on the right, then every object in Ch+(A ) admits a strict right Q-resolution.

2. If Q is large enough on the left, then every object in Ch−(A ) admits a strict left Q-resolution.

Proof. 1) Exercise. Hint: Take an injection q0 : A0 → Q0 where Q0 ∈ Q. To construct Q1, let r :

A0 → Q0 ⊕ A1 be given by r =

[
q0

−d0A

]
. Then choose an injection coker r → Q1 with Q1 ∈ Q. The map

q1 : A1 → Q1 is the composition
A1 ↪→ Q0 ⊕A1 � coker r → Q1

and the di�erential d0Q : Q0 → Q1 is the composition

Q0 ↪→ Q0 ⊕A1 � coker r → Q1.

[WLOG, assume A ∈ Ch+(A )≥0. We want to construct a quasi-isomorphism q = (qi) : A• → Q• where
Q• ∈ Ch+(Q)≥0. As Q is large enough, we have an injection q0 : A0 → Q0. Suppose we have already
constructed Q• and maps q• up to the ith step. Let p : Qi−1 � coker di−2Q be the quotient map. Let

r : Ai−1 → coker di−2Q ⊕ Ai be the map given by r =

[
pqi−1

−di−1A

]
. Let s : coker di−2Q ⊕ Ai � coker r be the

quotient. Choose an injection u : coker r → Qi with Qi ∈ Q. De�ne di−1Q = u ◦ s ◦ i1 ◦ p and qi = u ◦ s ◦ i2
as in the diagram:

Ai−1 di−1
A //

r

++

qi−1

��

Ai

i2tt

qi

��

coker di−2Q ⊕Ai

s

&&
coker di−2Q

i1

77

coker r

u
""

Qi−1

p

::

di−1
Q // Qi

Then check that Q• is a complex and q is a chain map and quasi-isomorphism.]

De�nition 2.8. Let F : A → B be a left exact functor of abelian categories. A full subcategory Q ⊂ A
is said to be a right adapted class for F if it satis�es the following conditions:

1. The class Q is large enough on the right.

2. If 0→ X ′ → X → X ′′ → 0 is a short exact sequence with X ′, X ∈ Q, then X ′′ ∈ Q.

3. For any short exact sequence 0 → X ′ → X → X ′′ → 0 with X ′ ∈ Q, the sequence 0 → F (X ′) →
F (X)→ F (X ′′)→ 0 is exact.

Similarly, for a right exact functor F : A → B, a full subcategory Q ⊂ A is said to be a left adapted
class for F if it satis�es the following conditions:

5



1. The class Q is large enough on the left.

2. If 0→ X ′ → X → X ′′ → 0 is a short exact sequence with X,X ′′ ∈ Q, then X ′ ∈ Q.

3. For any short exact sequence 0 → X ′ → X → X ′′ → 0 with X ′′ ∈ Q, the sequence 0 → F (X ′) →
F (X)→ F (X ′′)→ 0 is exact.

Example 2.9. Let A be an algebra and A-mod be the category of A-modules. Then the full subcategory
of projective modules P is large enough on the left and the full subcategory of injective modules I is large
enough on the right.

Let M be an A-module. Then Hom(M,−) is left exact with I as a right adapted class and M ⊗− (or
equivalently −⊗M) is right exact with P as a left adapted class.

Lemma 2.10. Let A and B be abelian categories.

1. Let F : A → B be a left exact functor, and let Q be a right adapted class for F . If Q ∈ Ch+(Q)
is acyclic, then F (Q) is acyclic. If f : X → Y is a quasi-isomorphism in Ch+(Q) , then F (f) is a
quasi-isomorphism.

2. Let F : A → B be a right exact functor, and let Q be a left adapted class for F . If Q ∈ Ch−(Q)
is acyclic, then F (Q) is acyclic. If f : X → Y is a quasi-isomorphism in Ch−(Q) , then F (f) is a
quasi-isomorphism.

Proof. Suppose F is left exact and let Q ∈ Ch+(Q) be acyclic. Let Ki = im di−1 = ker di. Any left exact
functor preserves kernels, then F (Ki) ∼= kerF (di). Using induction, suppose im F (di−2) = F (Ki−1) and
Ki−1 ∈ Q. We have a short exact sequence

η : 0→ Ki−1 → Qi di−1

→ Ki → 0.

As Q is an adapted class, we have Ki ∈ Q and F (η) is an exact sequence, so im F (di−1) ∼= F (Ki). Thus
F (Q) is acyclic.

Suppose f : X → Y is a quasi-isomorphism. Extend f to a distinguished triangle X
f→ Y → K → in

K+(Q). Note that f is a quasi-isomorphism if and only if K is acyclic, so apply the above result (apply
cohomology to the triangle to get a long exact sequence of cohomology).

Theorem 2.11. Let A and B be abelian categories.

1. If F : A → B is a left exact functor that admits a right adapted class, then it admits a right derived
functor RF : D+(A )→ D+(B).

2. If F : A → B is a right exact functor that admits a left adapted class, then it admits a left derived
functor LF : D−(A )→ D−(B).

We will describe what the functor RF does on objects and morphisms. For X ∈ Ch+(A ), choose a right
Q-resolution qX : X → QX . De�ne

RF (X) = F (QX).

Let f : X → Y be a morphism. As qX is a quasi-isomorphism, we can form f̃ = qY ◦ f ◦ q−1X : QX → QY .

As a basement, f̃ can be represented by the diagram

QX

h

!!

QY

s

}}
W

where s is a quasi-isomorphism. Then qW ◦ s : QY → QW is a quasi-isomorphism so F (qW ◦ s) is a
quasi-isomorphism. De�ne RF (f) : RF (X)→ RF (Y ) to be the basement diagram

RF (X) = F (QX)

F (qW ◦h)

''

RF (Y ) = F (QY )

F (qW ◦s)

ww
F (QW )
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De�ne the natural transformation ε : LB ◦ F → RF ◦ LA where for X ∈ K+(A ), let εX be the map

LB(F (X))
LB(F (qX))−−−−−−−→ LB(F (QX)) = RF (LA (X)).

Exercise 2.12. Check the above is well-de�ned. In particular, check that the de�nition does not depend
on which Q-resolution is taken and does not depend on which basement diagram is taken.

Proposition 2.13. Let F : A → B and G : B → C be left exact functors. Suppose that F and G have
right adapted classes Q ⊂ A and S ⊂ B, respectively, such that F (Q) ⊂ S . Then there is a canonical
isomorphism R(G ◦ F ) ∼→ RG ◦RF . Similarly for right exact functors.

Proof. Exercise.

3 Sheaves

As the category of sheaves of C-vector spaces on X, Sh(X), is abelian, we can form its derived category
D◦(X) := D◦Sh(X).

Proposition 3.1. Sh(X) has enough injectives.

Proof. For M a C-vector space, as shown in Example 2.2.4 of Stefan's talk, we have HomC(Gx,M) ∼=
HomSh(X)(G,Mx) natural in G, where Mx is the skyscraper sheaf at x. As all vector spaces are injective
objects, then HomC(−,M) is an exact functor so HomSh(X)(−,Mx) is also exact. Thus Mx is an injective
sheaf. Using the universal property of the product,

∏
x∈X(Mx) is also an injective sheaf.

Let F be a sheaf. There is a sheaf map ϕ : F → (Fx)
x
with ϕx : Fx → Fx the identity. By the universal

property of the product, we obtain an injective sheaf map θ : F →
∏

x∈X(Fx)
x.

By the proposition, all left exact functors have derived functors. However, Sh(X) may not have enough
projectives.

As the pullback functor is exact, for f : X → Y , let f∗ : D◦(Y )→ D◦(X) denoted the induced functor.
Since it is exact, we have (g ◦ f)∗F ∼= f∗g∗F for F ∈ D◦(X), by Proposition 2.1.5 of Stefan's talk, and
Proposition 2.13.

As the push-forward ◦f∗ is left exact, it has a derived functor denoted by f∗ : D
+(X)→ D+(Y ).

Proposition 3.2. The push-forward functor ◦f∗ sends injectives to injectives.

Proof. Exercise. Use the fact that ◦f∗ is a right adjoint to f∗ (Proposition 2.2.2 of Stefan's talk) and f∗ is
exact.

Corollary 3.3. Let f : X → Y and g : Y → Z be continuous. Then for F ∈ D+(X), we have g∗f∗F ∼=
(g ◦ f)∗F .

De�nition 3.4. Let A ∈ K−(A ) and B ∈ K+(A ). Their Hom chain-complex, denoted chHom(A,B)
is the chain complex in (VectC) whose terms are

chHom(A,B)n =
⊕

j−i=n

Hom(Ai, Bj)

and di�erential given by
d(f) = dB ◦ f + (−1)j−i+1f ◦ dA

for f ∈ Hom(Ai, Bj).

As Sh(X) has enough injectives, we can form the derived Hom functor (in the second variable)
RHom : D−(X)op ×D+(X)→ D+(VectC).

Proposition 3.5. For A ∈ D−(X) and B ∈ D+(X), there is a natural isomorphism

HomD(X)(A,B) ∼= H0(RHom(A,B)).
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Theorem 3.6. Let f : X → Y be a continuous map. For F ∈ D+(Y ) and G ∈ D+(X), there are natural
isomorphisms

RHomD+(X)(f
∗F ,G) ∼= RHomD+(Y )(F , f∗G)

HomD+(X)(f
∗F ,G) ∼= HomD+(Y )(F , f∗G)

Proof. Replace G by an injective resolution. The �rst claim reduces to the claim that there is a natural
isomorphism chHom(f∗F ,G) ∼= chHom(F ,◦ f∗G), which follows from the fact that f∗ is adjoint to ◦f∗ in
the abelian case. The second claims follows from fact that the 0th cohomology of RHom is Hom.

Remark 3.7. Let X,Y ∈ Sh(X). For n ∈ Z, the nth Ext group of X and Y , denoted by ExtnSh(X)(X,Y )

or Extn(X,Y ), is given by

Extn(X,Y ) := HomD(X)(X,Y [n]) = Hn(RHom(X,Y )).
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