Perverse Sheaves Learning Seminar: Derived Categories and its
Applications to Sheaves

Yuguang (Roger) Bai
September 29, 2018

1 Derived Categories

Unless otherwise stated, let .« be an abelian category.

Definition 1.1. Let Ch(<) be the category of chain complexes in 7. Objects in this category are chain
complexes A®, which is a sequence of objects and morphisms in < of the form

. di—l . dl .
N L S

satisfying d’ o d*~! = 0 for every i € Z.
A morphism f : A®* — B® between two complexes is a collection of morphisms f = (f*: A* — B%);cz in
o such that fi*lodly = d o f! for every i € Z.

Definition 1.2. A chain complex A® is said to be bounded above if there is an integer N such that A =0
for all i > N. Similarly, A® is said to be bounded below if there is an integer IV such that A’ = 0 for all
i < N. A® is said to be bounded if it is bounded above and bounded below.

Let Ch= (<) (resp. Ch* (<), Ch®(</)) denote the full subcategory of Ch(</) consisting of bounded-
above (resp. bounded-below, bounded) complexes.

Let Ch°(«/) denote any of the four categories above. For a complex A°, let [1] : Ch(«) — Ch()
denote the shift functor where A[1]" = A*~1.

Definition 1.3. A quasi-isomorphism in Ch(</) is a chain map f : A®* — B* such that the induced maps
H"™(f): H"(A) — H™(B) are isomorphisms for all n.

The derived category for & can be thought of as a category obtained from Ch(</) by having quasi-
isomorphisms be actual isomorphisms. To do this, we localize (= invert) quasi-isomorphisms.

Definition 1.4. Let o/ be an additive category and let . be a class of morphisms in &/ closed under
composition. Let 27 be an additive category and let L : &/ — &/ be an additive functor. We say (s, L)
is obtained by localizing </ at .7 if &7’ is an additive category and F : o7 — &/’ is an additive functor that
sends all morphisms of .% to isomorphisms, then there exists a unique functor F : o7/ — </’ and a unique
isomorphism € : Fo L = F.

This is similar to the construction of localizing a ring. However, like in the case of localizing a ring,
localizations may not always exist or be nice. Proposition 1.6.3 of [?] state that a localization </ exists for
a7 if .7 satisfies the following conditions:

Lo For every X € o/, we have idx € .7.
L1 Given morphisms f: X - Y and s: Z — Y with s € ., there is a commutative diagram
w-—2s7
tl is
f
X ——Y
with t € 7.



L2 Given morphisms g : W — Z and t : W — X with t € ., there is a commutative diagram

w2z
tl is
f
X——Y
with s € ..
L3 Given morphisms f,g: X — Y, the following are equivalent:

e There is a morphism ¢ : Y — Y’/ with ¢t € .¥ such that to f =tog.
e There is a morphism s : X’ — X with s € . such that fos=gos.

The objects of &7 are the same as o7, but the morphisms are “roofs”.

Definition 1.5. Let . be a class of morphisms closed under composition. For X,Y € &/, a roof diagram

from X to Y is a diagram of morphisms
W
N
X Y

with s € .#. Two roof diagrams X < W Lyand X Ew Ly are equivalent if there is a commutative
diagram in &/

Wl
with v € .. Note that this means the compositions U — W — X and U — W’ — X are homotopy
equivalent, so since the first is a quasi-isomorphism, so is the second.

If . satisfies LO-L3, one can identify Homg, (X,Y) with equivalence classes of roof diagrams, where

composition of roof diagrams X < W — Y and Y & W’ — Z is a commutative diagram X < W’ — Z of

the form
W//
27N
w w'
X Y A

with §” € .. The existence of such a diagram follows from L1.

Remark 1.6. Basement diagrams can also be used instead of roof diagrams to describe Homy, (X,Y"). These

are diagrams of the form

where s € .¥.



Unfortunately, quasi-isomorphisms in Ch(2/) do not satisfy these conditions. To remedy this, instead of
working with Ch(«/), we work with the homotopy category K ().

Definition 1.7. The homotopy category of <7, denoted by K (<) , is the category whose objects are
those of C'h(<7), but whose morphisms are homotopy classes of chain maps. That is, Hom () (A®, B®) :=
Homcp () (A®, B®)/ ~, where for two morphisms f,g: A* — B*® in Ch(/), we say f ~ g if there exists a
collection of morphisms h’ : A® — B*~! i € Z, such that

fi _gz _ hi+1 Od% +dlB—1 Ohi.

As in the case of Ch(A), let K~ (<) (resp. KT (<), K*(</)) denote the full subcategory of K (&) of
bounded-above (resp. bounded-below, bounded) complexes.
Let K°(«7) denote any of the four homotopy categories.

Remark 1.8. One can show that K°(&) is equivalent to Ch°(«7) localized at chain homotopies.
Proposition 1.9. In K°(<f) the class of quasi-isomorphisms satisfies L1-L3.
Proof. See Section 1.6 of [?]. O

Definition 1.10. The derived category (resp. bounded-above derived category, bounded-below derived
category, bounded derived category) of <7, denoted D (<) (resp. D~ (2/), D (<7), D?(7)) is the category
obtained from K (<) (resp. K~ (), Kt (), K’(</)) by localizing at the quasi-isomorphisms.

Let D°(<7) denote any of the four derived categories.

Remark 1.11. For an object A € o7, we can view A as a chain complex A® where A° = A and A® = 0 for
i # 0. This allows us to embed .« into D’(&/) as a full subcategory.

We will now proceed to the important notion of distinguished triangles.
Definition 1.12. Let f: (A®,d%) — (B*,d%) be a chain map. The chain-map cone (mapping cone) of
f, denoted by cone(f), is the chain complex given by
cone(f)' = A ¢ B
with differential d* : cone(f)* — cone(f)"™! given by

i = [—diﬁl 0 }
ferl dZB .

The inclusion maps B — cone(f)" and projection maps cone(f)? — A**! give chain maps
io : B — cone(f) and p;:cone(f) — All]

Exercise 1.13. Show that the composition B® — cone(f) — A°®[1] is zero and the composition A®* — B® —
cone(f) is homotopic to the zero map.

Definition 1.14. A diagram
A1 — A2 — A3 — Al[”
in K°(«) (resp. D°(&)) is called a distinguished triangle if it is isomorphic in K°(<7) (resp. D°(«/))
to a diagram of the form
ALp® cone(f) 2B A[1]
for some chain map f.
An additive category with a shift functor (automorphism) and distinguished triangles (collection of di-

agrams) satisfying some natural axioms is called a triangulated category. The homotopy category K°(<7)
and the derived category D°(«7) are natural examples.

Remark 1.15. If we have a distinguished triangle X — Y — Z — X[1], then it gives us a long exact sequence
in cohomology
- — HYX) — H¥Y) — H*(Z) — H"(X) — - -



2 Derived Functors

Definition 2.1. Let 7 and 7’ be triangulated categories (e.g. DY(</) and D®(</')). A triangulated
functor is an additive functor F': . — 7’/ with a natural isomorphism

such that for any distinguished triangle X - Y — Z — X[1] in .7,
FX)—=FY)—F(Z)— F(X)[1]
is a distinguished triangle in 7.

Lemma 2.2. If F: &/ — A is an additive functor of additive categories, the induced functor F : K°(</) —
K°(9RB) is a triangulated functor. If in addition F is an exact functor of abelian categories, the induced
functor F : D°(</) — D°(%) is a triangulated functor.

Proof. Easy exercise. O

Recall that a complex A® in Ch°(&/) or K°(&/) is called acyclic H'(A®) = 0 for all i. If we have
a functor F' that is not exact, the image of an acyclic complex may not be acyclic, or it may not send
quasi-isomorphisms to quasi-isomorphisms.

In the case of an exact functor F, we obtain a triangulated functor F : D°(/) — D°(%) and a natural
isomorphism 6 : Lg o F = F o L, where Lo : K°(&/) — D°(&) is the localization functor. Then in the
case where F' is not exact, the next best thing is to have a natural transformation in one direction.

Definition 2.3. Let F : K°(&/) — K°(2) be a triangulated functor. A right derived functor of F is a
triangulated functor RF : D°(&/) — D°(9%) with a natural transformation

€:LgoF — RF oLy

that is universal in the following sense: if G : D°(&/) — D°(Z) is another triangulated functor with a
natural transformation ¢ : Lg o F — G o L, then there exists a unique functor morphism ¢ : RF — G
such that ¢ = ((}Ld) o€, where Ly : RF oLy — Go L.
Similarly, a left derived functor of F is a triangulated functor LF : D°(%/) — D°(%) together with a
natural transformation
n:LFoLy — LgoF

that is universal in the following sense: if G : D°(&/) — D°(%) is another triangulated functor with a
natural transformation ¢ : Go L, — Lgo F, then there exists a unique functor morphism ¢ : G — LF such
that ¢ =no (¢Ly) where ¢pLo : Go Loy — LF o Lgy.

Definition 2.4. Let o/ be an abelian category and 2 C & a full subcategory. 2 is said to be large
enough on the right if for any object A € o7, there is an injective map A — X with X € 2.

Similarly, 2 is said to be large enough on the left if for any object A € <7, there is a surjective map
X — A with X € 2.

Definition 2.5. Let 2 C &/ be a full subcategory.

1. Given A € Ch°(«), a right Z-resolution of A is a quasi-isomorphism ¢ : A — @ such that
Q € Ch°(2). For A € Ch* (&), such a right resolution is said to be strict if A € Ch(=/)=" and
Q € Ch(&Z)=" for a fixed n.

2. Given A € Ch°(«), a left 2-resolution of A is a quasi-isomorphism ¢ : @ — A such that Q €
Ch°(2). For A € Ch™ (<), such a right resolution is said to be strict if A € Ch(&/)<" and Q €
Ch(a/)=" for a fixed n.



Example 2.6. Consider the case of A € 7 as a sequence A® where A* = 0 for i # 0 and A° = A. Then a
strict right 2-resolution Q°® of A is the same as giving an exact sequence

0—>Aoi>Q0d—%>Q1 do ..
The map ¢ : A° — QO is called the augmentation map.
Proposition 2.7. Let o/ be an abelian category and let 2 C &/ be a full subcategory.
1. If 2 is large enough on the right, then every object in Ch™ (&) admits a strict right 2-resolution.
2. If 2 is large enough on the left, then every object in Ch™ (<) admits a strict left 2-resolution.

Proof. 1) Exercise. Hint: Take an injection ¢° : A% — Q° where Q € 2. To construct Q!, let r :

0
A% — Q" @ A! be given by r = [ } Then choose an injection coker 7 — Q! with Q' € 2. The map

1 0
—d%,
gt : A' = Q" is the composition
A — Q% @ A — coker r — Q*

and the differential dOQ : Q% — Q' is the composition
Q" — Q@ A' — coker r — Q.

[WLOG, assume A € Ch*(27)2°. We want to construct a quasi-isomorphism ¢ = (¢*) : A* — Q® where
Q* € Cht(2)2°. As 2 is large enough, we have an injection ¢° : A — Q. Suppose we have already

constructed Q°* and maps ¢* up to the ith step. Let p : Q°~' — coker de be the quotient map. Let

r: A1 — coker sz—z @ A" be the map given by r = [pqdil]' Let s : coker d’Q_2 @ A" — coker r be the
0y

quotient. Choose an injection u : coker r — Q° with Q € 2. Define dgl =yosoiopand ¢* =uosoiy

as in the diagram:

i—1
dA

coker dg2 oA

gt / \ 7
1

A A

coker diQ*2 coker r
/ o \
Qi1 dq o
Then check that Q* is a complex and ¢ is a chain map and quasi-isomorphism.] O

Definition 2.8. Let F': of — % be a left exact functor of abelian categories. A full subcategory 2 C o7
is said to be a right adapted class for F' if it satisfies the following conditions:

1. The class 2 is large enough on the right.
2. If0— X' — X — X" — 0is a short exact sequence with X', X € 2, then X" € 2.

3. For any short exact sequence 0 — X' — X — X" — 0 with X’ € 2, the sequence 0 — F(X') —
F(X)— F(X") — 0 is exact.

Similarly, for a right exact functor F' : & — 9, a full subcategory 2 C & is said to be a left adapted
class for F if it satisfies the following conditions:



1. The class 2 is large enough on the left.
2. If 0 > X' - X — X" — 0 is a short exact sequence with X, X" € 2, then X' € 2.

3. For any short exact sequence 0 - X' — X — X" — 0 with X” € 2, the sequence 0 — F(X') —
F(X)— F(X") — 0 is exact.

Example 2.9. Let A be an algebra and A-mod be the category of A-modules. Then the full subcategory
of projective modules P is large enough on the left and the full subcategory of injective modules 7 is large
enough on the right.

Let M be an A-module. Then Hom(M, —) is left exact with Z as a right adapted class and M ® — (or
equivalently — ® M) is right exact with P as a left adapted class.

Lemma 2.10. Let &/ and % be abelian categories.

1. Let F : of — P be a left exact functor, and let 2 be a right adapted class for F. If Q € Ch*(2)
is acyclic, then F(Q) is acyclic. If f : X — Y is a quasi-isomorphism in Ch™(2) , then F(f) is a
quasi-isomorphism.
2. Let F': o/ — A be a right exact functor, and let 2 be a left adapted class for F. If Q € Ch™(2)
is acyclic, then F(Q) is acyclic. If f: X — Y is a quasi-isomorphism in Ch=(2) , then F(f) is a
quasi-isomorphism.
Proof. Suppose F is left exact and let Q € Ch™(2) be acyclic. Let K® = im d'~! = kerd’. Any left exact
functor preserves kernels, then F(K*) = ker F(d"). Using induction, suppose im F(d*~2) = F(K'"!) and
Ki=1 € 2. We have a short exact sequence

. .o gi—1 .
n:O—)K“l—>Qld—> K'*—0.
As 2 is an adapted class, we have K' € 2 and F(n) is an exact sequence, so im F(d~1) = F(K"). Thus
F(Q) is acyclic.
Suppose f : X — Y is a quasi-isomorphism. Extend f to a distinguished triangle X i> Y - K —in
KT (2). Note that f is a quasi-isomorphism if and only if K is acyclic, so apply the above result (apply
cohomology to the triangle to get a long exact sequence of cohomology). O
Theorem 2.11. Let &/ and A be abelian categories.
1. If F: of — P is a left exact functor that admits a right adapted class, then it admits a right derived
functor RF : DY (/) — DV ().
2. If F: o — A is a right exact functor that admits a left adapted class, then it admits a left derived
functor LF : D~ (/) — D~ (A).

We will describe what the functor RF does on objects and morphisms. For X € Ch™* (), choose a right
Q-resolution ¢x : X — @Qx. Define
RF(X) = F(Qx).

Let f: X — Y be a morphism. As ¢gx is a quasi-isomorphism, we can form f =qyofo q)_(l T Qx — Qy.
As a basement, f can be represented by the diagram

Qx Qy
X /
w

where s is a quasi-isomorphism. Then gy os : Qy — Qw is a quasi-isomorphism so F(qw o s) is a
quasi-isomorphism. Define RF(f) : RF(X) — RF(Y) to be the basement diagram

RF(X) = RF(Y)=F(Qy)

F(qwoh) F(qwos)
F(Qw)



Define the natural transformation € : Lg o F' — RF o L, where for X € KT(&), let ex be the map

Lo (F(ax))

Lag(F(X)) La(F(Qx)) = RF (L (X)).

Exercise 2.12. Check the above is well-defined. In particular, check that the definition does not depend
on which 2-resolution is taken and does not depend on which basement diagram is taken.

Proposition 2.13. Let F': & — B and G : B — € be left exact functors. Suppose that F' and G have
right adapted classes 2 C & and & C B, respectively, such that F(2) C .. Then there is a canonical
isomorphism R(G o F) = RG o RF. Similarly for right exact functors.

Proof. Exercise. O

3 Sheaves

As the category of sheaves of C-vector spaces on X, Sh(X), is abelian, we can form its derived category
D°(X) :== D°Sh(X).

Proposition 3.1. Sh(X) has enough injectives.

~

Proof. For M a C-vector space, as shown in Example 2.2.4 of Stefan’s talk, we have Homc(G,, M) =
Homgpxy(G, M) natural in G, where M™ is the skyscraper sheaf at . As all vector spaces are injective
objects, then Homc(—, M) is an exact functor so Homgp(x)(—, M") is also exact. Thus M™ is an injective
sheaf. Using the universal property of the product, [T, v (M?) is also an injective sheaf.

Let F be a sheaf. There is a sheaf map ¢ : F — (F,)* with ¢, : F,, — F, the identity. By the universal
property of the product, we obtain an injective sheaf map 6 : F — [] o v (Fz)® O

By the proposition, all left exact functors have derived functors. However, Sh(X) may not have enough
projectives.

As the pullback functor is exact, for f : X — Y, let f*: D°(Y) — D°(X) denoted the induced functor.
Since it is exact, we have (g o f)*F = f*¢*F for F € D°(X), by Proposition 2.1.5 of Stefan’s talk, and
Proposition 2.13.

As the push-forward ° f, is left exact, it has a derived functor denoted by f, : D¥(X) — DT (Y).

Proposition 3.2. The push-forward functor °f. sends injectives to injectives.

Proof. Exercise. Use the fact that °f, is a right adjoint to f* (Proposition 2.2.2 of Stefan’s talk) and f* is
exact. 0

Corollary 3.3. Let f : X - Y and g : Y — Z be continuous. Then for F € DT (X), we have g, f F =
(g0 f)sF.

Definition 3.4. Let A € K~ (&) and B € Kt («/). Their Hom chain-complex, denoted chHom(A, B)
is the chain complex in (Vectc) whose terms are

chHom(A, B)" = @ Hom(A", BY)

Jj—i=n

and differential given by o
A(f) =dp o [+ (1" fody
for f € Hom(A?, BY).

As Sh(X) has enough injectives, we can form the derived Hom functor (in the second variable)
RHom : D™ (X)° x DT(X) — D% (Vectc).

Proposition 3.5. For A€ D~ (X) and B € D' (X), there is a natural isomorphism

Hompx)(A, B) = H(RHom(A, B)).



Theorem 3.6. Let f : X — Y be a continuous map. For F € DT(Y) and G € D (X), there are natural

isomorphisms
RHomp+x)(f*F,G) = RHomp+y)(F, f+G)

Homp+x)(f*F,G) = Homp+y)(F, f+G)

Proof. Replace G by an injective resolution. The first claim reduces to the claim that there is a natural
isomorphism chHom(f*F,G) = chHom(F,° f.G), which follows from the fact that f* is adjoint to °f, in
the abelian case. The second claims follows from fact that the Oth cohomology of RHom is Hom. O

Remark 3.7. Let X,Y € Sh(X). For n € Z, the nth Ext group of X and Y, denoted by Extgh(x)(X, Y)
or Ext™(X,Y), is given by

Ext™(X,Y) = Hompx)(X,Y[n]) = H"(RHom(X,Y)).



